
Systems Engineering, Test & Evaluation Conference, Sydney, Australia , October 2002

Page 1

0950-1

The Cataract Methodology for Systems and Software Ac-
quisition1

Joseph Kasser DSc CEng CM MIEE

Systems Engineering and Evaluation Centre

University of South Australia
School of Electrical and Information Engineering F2-37

Mawson Lakes Campus

South Australia 5095

Telephone: +61 (08) 830 23941, Fax: +61 (08) 830 24723

Email: joseph.kasser@unisa.edu.au

1 This work was partially funded by the DSTO Centre of Expertise Contract

Abstract. This paper documents the Cataract

methodology, which is based on the recognition

that the “Build” approach used in the operations

and maintenance phase of the system and software

development for software maintenance is also ap-

plicable to the initial development phase. The Cata-

ract Methodology has been constructed out of

components in existing methodologies, each of

which have been shown to be effective. The Cata-

ract methodology extends the spiral approach by

emphasizing the criticality of configuration man-

agement and the type of information needed to con-

trol system and software development in an inte-

grated engineering and management environment.

The Cataract methodology with its focus on con-

figuration and knowledge management can produce

systems that converge with the needs of the cus-

tomer with fewer cost and schedule escalations and

project failures provided appropriate knowledge

management and configuration tools are used.

INTRODUCTION

The current systems and software acquisition para-

digm is characterized by project failures and cost

and schedule overruns. Data from the USA (Chaos

1995) and UK (OASIG 1996) show that the prob-

lem is an international one. Conventional wisdom

states that the Waterfall approach does not cope

well with changing requirements. Thus efforts to

overcome the problem have reacted to the effects of

poorly articulated and changing user requirements

during the development process and have focussed

on changing the production process from the water-

fall approach to some type of rapid, spiral, or other

methodology, but without much of an improve-

ment. Now, from an information systems and

Knowledge Management perspective these acquisi-

tion programs do not fail because the requirements

change, they fail because of poor requirements

management, namely the failure to manage the

changing requirements. This paper analyses the

system and software methodology, provides some

insight into the nature of the process generally

thought of as represented by Figure 1. The custom-

er has a need that is documented in a statement of

work and a contract is awarded for development of

a product or system that meets the need. The con-

tractor then develops the product over some period

of time. There are a number of milestone reviews

along the production process to attempt to verify

that the development contractor is producing the

correct system.

The Waterfall methodology shown in Figure 2

was the first attempt to document the production

process. It showed the process as a serial sequence

of events.

The requirements analysis phase is the phase in

which the user needs and constraints are examined.

This is then followed by the production of the ini-

tial set of user requirements or needs. The user’s

Figure 1 The ideal process

Figure 2 The Waterfall Meth-
odology

Systems Engineering, Test & Evaluation Conference, Sydney, Australia , October 2002

Page 2

0950-2

needs are then translated into system requirements,

which these days are stored in the database of a

Requirements Management tool. The process of

accepting the initial set of requirements may be

represented as shown in Figure 3. Each require-

ment must be considered as a request until accepted

and is allocated an identification number. The re-

quirement must be assessed for priority, and cost

and schedule impact, as well as for risks. However,

during the pre System Requirements Review (SRR)

period, some of these assessments are currently

generally not performed. The requirements must be

considered as not being firm until all the initial

system requirements have been documented. Dur-

ing this process the customer must resolve conflicts

in the requirements. At that time, the process of

gathering the initial set of requirements generally

terminates with the SRR in which both customer

and development contractor accept the require-

ments and the requirements are frozen (no further

changes allowed). The customer agrees that the

requirements represent the needs, and the develop-

ment contractor agrees to produce a system that

meets the requirements. The next phase in the wa-

terfall methodology is the design phase, which fol-

lows once the requirements have been accepted. It

is the phase in which modules of the system are

designed to meet the requirements. The implemen-

tation phase in which the system is constructed

then follows. Once the system is constructed it is

formally tested and finally delivered to the custom-

er for use.

Milestone reviews take place between the

phases to confirm that the work allocated to a spe-

cific phase is complete and the process is ready to

advance to the next phase. The name of the meth-

odology was adopted because the pictorial repre-

sentation shows each phase seeming to flow natu-

rally into the next phase like water flowing over a

series of falls.

The Waterfall process is ideal when the vision

of the product exists (all requirements are known)

at the time that the contract is awarded, and the

contractor just builds it. However, in the real world

the situation is different as shown in Figure 4. Dur-

ing the time that the contractor advances towards

the vision of the product that existed at the time the

contract was awarded, the vision itself changes. In

other words, the target is moving. Thus, while the

delivered system may meet its original require-

ments, the system will not meet the "new" require-

ments in effect at the time of delivery. The target

moves for various reasons including

• The customer requirements change over time

for different reasons.

• The customer has non-articulated requirements

at the start of the process and manages to artic-

ulate them as time passes.

• Externally driven changes such as changes in

government regulations, changes in the mar-

ketplace, and changes in other systems that in-

terface with the system at any level within the

meta-system, system, and subsystem hierarchy.

This situation leads to poorly controlled con-

struction as represented by the chaotic waterfall

model shown in Figure 5. If the Spiral model

(Boehm 1988) is opened up, it can be seen to be a

series of waterfalls. While the spiral approach em-

phasizes risk management, and facilitates the artic-

ulation of requirements, it does not emphasize con-

figuration control. Thus while the Spiral model

provides some improvement, the lack of configura-

tion control tends to result in moving baselines and

confusion, which leads to cost escalation and

schedule delays.

The real world of continuously changing re-

quirements is recognized by Kasser (2001) who

writes, the goal of system engineering is to provide

a system that

• Meets the customer's requirements as stated

when the project starts.

• Meets the customer's requirements, as they

Figure 3 Process for accepting
requirements

Figure 4 The process in the real
world of changing requirements

Figure 5 The Chaotic view of
the waterfall

Systems Engineering, Test & Evaluation Conference, Sydney, Australia , October 2002

Page 3

0950-3

exist when the project is delivered.

• Is flexible enough to allow cost effective modi-

fications to be implemented as the customer's

requirements continue to evolve during the op-

erations and maintenance phase of the system

life cycle.

Thus the goal of the SDLC must then be to

manage change in a manner that achieves conver-

gence between the needs of the user and the capa-

bility of the as-built system in a cost-effective

manner as shown in Figure 6.

The way to achieve this goal seems to be not to

attempt identify all the requirements at the start of

the project, but to only identify the highest priority

requirements and the real requirements. Then to

achieve convergence by fleshing out the require-

ments in a controlled manner and delaying design

decisions using a just-in-time approach (Kasser

2000a) in the cataract implementation of the budget

tolerant methodology (Denzler and Kasser 1995).

The Cataract methodology relies on two factors

• The waterfall methodology works very well

over a short period of time as shown by the

Spiral model.

• Implementation and delivery of systems and

software are often performed in partial deliver-

ies, commonly called "Builds" in which each

successive Build provides additional capabili-

ties.

Build planning is not a new concept. It has been

used in software maintenance for many years. The

insight presented herein is that as soon as the first

Build in the development process has begun, the

development process and the maintenance process

are identical. In the software world, a Build means

a defined software component. Successive Builds

enhance the capability of the software. In the hard-

ware world, Builds can comprise subsystems, or

the integration of two or more subsystems.

The cataract approach to Build Planning may be

likened to a Rapid Prototyping scenario within the

spiral in which the requirements for each Build are

frozen at the start of the Build. Once the initial set

of requirements has been signed off, the system

architecture designed, and the implementation allo-

cated into a series of Builds, the implementation

phase embodying the cataracts begins and the ac-

tivities in the development organization can be

shown in the traditional GANTT chart format de-

picted in Figure 7.

The work associated with each Build takes

place in the three parallel streams of activities

(management, development and test/Quality),

which include

• Systems engineering performs requirements

and interface engineering, change assessment,

risk management allocates the system level re-

quirements between the hardware and software

components, coordinates technical perfor-

mance analysis and measurement, and produc-

es the process-products (documentation).

• Software engineering turns the software re-

quirements into code, and evaluates and per-

haps incorporates commercial-off-the-shelf

(COTS) software.

• Hardware engineering may be working with

the computers, workstations, disk drives or

other storage elements, networks, and custom

hardware elements.

• Test and evaluation develops test plans and

procedures, then performs the tests and reports

on the results.

• System Integration integrates the hardware

and software units and verifies their working

together.

• Final testing in which the integrated Build is

tested prior to acceptance by the customer.

• Transition is the time in which the Build is

turned over to the customer or user.

• Operations and maintenance is the time span

when the Build is operated by the customer, or

by the maintenance contractor.

• Management is the planning, organizing, di-

recting, and controlling the technical and ad-

ministrative work. This includes making sure

that the needed resources are available at the

appropriate time.

BUILD ZERO AND SUBSEQUENT

BUILDS

The Cataract methodology incorporates an initial

Build, Build Zero, which contains the same initial

two phases, requirements and design, of the Water-

Figure 6 The road to conver-
gence

Figure 7 The traditional
GANTT Chart format

Systems Engineering, Test & Evaluation Conference, Sydney, Australia , October 2002

Page 4

0950-4

fall methodology with the exception that there is

recognition that

• All the requirements are not finalized at SRR.

• Additional requirements will become known as

the project progresses.

• Design and implementation decisions will be

deferred and made in a just in time manner

(Davies 1998; Kasser 2000a). These decisions

must also be made so as to maximize the

“don’t care” situations (Kasser 2001).

The work in Build Zero is to

• Identify the highest priority requirements.

• Baseline an initial set of user needs and corre-

sponding system requirements.

• Develop the Framework for Requirements

Engineering in a Digital Integrated Environ-

ment (FREDIE) incorporating the Quality Sys-

tem Elements (QSE) for each of the baselined

requirements (Kasser 2000). The FREDIE

provides the data necessary for making in-

formed decisions about accepting the initial set

of requirements and subsequent changes.

• Complete the first draft of the Systems Engi-

neering Management Plan (SEMP) and Opera-

tions Concept Documents (OCD) (Kasser and

Schermerhorn 1994).

• Design the Architecture Framework for the

system in accordance with the Defence Eval-

uation and Research Agency (DERA) Refer-

ence Model (DERA 1997).

• Perform risk assessment to determine the pro-

posed Architecture Framework can meet all of

the highest priority requirements.

• Document the assumptions driving the Archi-

tecture Framework and a representation of op-

erational scenarios (Use Cases) that the Archi-

tecture Framework prohibits. This activity also

helps identify missing and non-articulated re-

quirements early in the SDLC. The design of

the Architecture Framework for the entire sys-

tem in Build Zero introduces a risk that it may

not be suitable for changes years later in its

operations and maintenance phase (or even

earlier). This is why part of the Build Zero ef-

fort is to determine scenarios for which the

system is not suitable. The customer is then

aware of the situation. The goal of the Cataract

methodology is to achieve convergence be-

tween the customer’s needs and the operational

system. In the course of time, one can expect

that the need will change to something for

which the system cannot provide capability. At

that time, a revolutionary Build will be needed

to replace the system. However, it will be done

with full knowledge in a planned manner, ra-

ther than the ad-hoc manner of today’s envi-

ronment.

• Develop the work breakdown structure (WBS)

to level the workload across the future Builds

and implement the highest priority require-

ments in the earlier Builds (Denzler and Kasser

1995).

From Build One inclusive, each subsequent

Build is a waterfall in itself. The requirements for

the Build are first frozen at the Build SRR. Then

the design effort begins. Once the design is over,

the Build is implemented and the system turned

over for integration. While the design team does

assist with the integration, their main effort is to

start to work on the design of the next Build. Once

the first Build has been built and is working, the

requirements freeze, design - integrate - test - tran-

sition and operate stages of the system life cycle

(SLC) commences for the second Build. This cycle

will continue through subsequent Builds until the

system is decommissioned although the contract

may change from the development organization to

the maintenance organization. Each Build is an

identical process but time delayed with respect to

the previous one. Each successive Build provides

additional capabilities. When the Builds are placed

under configuration control, the Waterfall may ini-

tially be drawn as shown in Figure 8 however this

figure is misleading. Externally driven changes are

requested and problems tend to show up during the

integration and test phases. When a problem is no-

ticed, a discrepancy report (DR) is issued against

the symptom. This DR is analysed and the cause

identified. A change request is then issued by the

Configuration Control Board (CCB) to resolve the

defect either in the current Build before delivery, or

by assigning it to be fixed in a subsequent Build.

Thus Figure 8 should be replaced with Figure 9

showing that the Cataract methodology explicitly

adds the management of changing requirements to

the DERA Evolutionary Lifecycle approach (DE-

RA 1997 Figure 24). The feedback and externally

driven change request, if accepted, may be imple-

mented in the appropriate future Build. Think of

each Build as being completed a little behind the

arrowhead of the advancing requirements. From

this perspective, the gap between the user’s need

Figure 8 Configuration Con-
trol View of Waterfall

Systems Engineering, Test & Evaluation Conference, Sydney, Australia , October 2002

Page 5

0950-5

and the completed section of the system converges

over time.

Project personnel move from one Build to the

next; the development team moves from one Build

to the next, as does the testing team. Ideally the

Builds are sequential with no wasted time between

them. The customers tend to get increasingly in-

volved with the system during later Builds by vir-

tue of being able to use early Builds.

Each Build is placed under configuration con-

trol and may be delivered to the customer. Accept-

ed change requests modify the requirements for

future Builds, with the sole exception of “stop

work” orders for Builds-in-progress if the change is

to remove major (expensive to implement) re-

quirements being implemented in a Build-in-

progress. The milestone reviews within a Build are

identical to those in the Waterfall methodology,

since the Build is implemented within the Water-

fall. All change requests received during any Build

are processed and if accepted are allocated to sub-

sequent Builds. Freezing of the requirements for

each Build at the Build SRR means that when the

Build is delivered it is a representation of the cus-

tomer’s needs at the time of the Build SRR. It may

not meet the needs of the customer at the time of

delivery, but the gap should be small depending on

the time taken to implement the Build. Thus

achieving convergence between the needs of the

customer and the capability of the as-delivered sys-

tem.

CHANGES

Donaldson and Siegel (1997) state that there are

two types of changes during the SDLC namely

planned and unplanned.

Change requests. The process for dealing with

both types of change is the same. The change re-

quests are processed via the configuration control

board (CCB) in the same way that they process

DRs. Requests for planned changes tend to be pro-

cessed well before the change is to be implement-

ed. Requests for unplanned changes however, need

to be categorized by priority. Typical categories

may be “routine”, “urgent”, or “do by yesterday” or

their equivalents. A typical “do by yesterday”

change request is the result of an analysis of a DR

reporting that the system crashes. The process for

handling a change request is shown in Figure 10.

Some internal or external source generates a

change request, which is logged and assigned an

identification number. The impact of the requested

change on the product and process (Builds) is then

assessed and a decision made as to whether to ac-

cept or reject the request. The source is then noti-

fied of the decision, if the change request is accept-

ed, then

• From the product perspective, the requirements

are changed to reflect the new situation. This is

done by adding, deleting or modifying (a com-

bination of adding and deleting) requirements.

• From the process perspective, the Build Plan is

changed to show when and where the change

will be implemented.

• The SEMP and OCD are modified as appropri-

ate.

The change request process shown in Figure

10 is the same as the process for accepting the ini-

tial set of requirements at the start of the SLC

shown in Figure 3. Thus the only difference be-

tween a requirement at the start-up phase and a

change sometime later in the entire SLC is that a

start-up is a transition from no system to some sys-

tem, while a change is a transition from some sys-

tem configuration to a different system configura-

tion. This perspective complies with Hitchins’

(1998 p72) requirement that a system-to-be-created

must be viewed during conception and design as

though it already existed and was operating. By

viewing the SLC from an information system per-

spective, the initial SDLC can be seen to repeat

repetitively during the development contractor’s

Builds as well as during the operations and mainte-

nance phase of the SLC.

The key to effective control of the process is

effective configuration control and informed deci-

sions about the impact of any change request on the

product (capability) and process (cost and sched-

ule) which requires knowledge management. The

poor management of the multi-phased, time-

ordered, parallel activities, and the lack of infor-

Figure 9 The Cataract Method-
ology

Figure 10 The Change request
process

Systems Engineering, Test & Evaluation Conference, Sydney, Australia , October 2002

Page 6

0950-6

mation precluding informed decisions about the

impact of the decisions are major contributors to-

wards the current cost and schedule escalations and

project failures.

THE CATARACT PERSPECTIVE

From the cataract perspective

• Successive Builds do not have to be incremen-

tal or evolutionary, they can also be revolu-

tionary, i.e. an entire replacement system can

be factored into the schedule. Thus legacy sys-

tems can be upgraded and replaced with mini-

mal waste of resources using the Cataract

methodology. By knowing when parts of the

system will be replaced (in which Builds), in-

formed decisions can be made as to which de-

fects to fix, and which modifications to make,

to the current system. As well as which to de-

fer to the replacement system.

• The Year 2000 issue was just a DR and chang-

es made as a result of the analysis of the prob-

lem.

• Effective configuration control and infor-

mation about the state of the project is vital.

• The Cataract methodology depends on a new

generation of tools and information displays

such as the QSE, FREDIE, and Categorized

Requirements in Process (CRIP) charts (Kasser

1997).

• The Cataract methodology is an integrated

product-process (engineering and manage-

ment) methodology that can be used to control

costs and schedules and minimize project fail-

ures.

SUMMARY

By viewing the SDLC from the perspective of

Builds it can be seen that

• The SDLC is a time-ordered task. In addition,

since the development contractor may be

working on more than one Build at a time,

each Build being in a different part of its

SDLC, the total SDLC is also a parallel pro-

cess with phase-delayed elements.

• Except for Build Zero, the work performed in

the SDLC, namely up to the time the develop-

ment contractor turns the system over to the

customer (and the maintenance contractor) is

identical to the work performed during the op-

erations and maintenance phases of the SLC.

CONCLUSION

Both the SDLC and the SLC are multi-phased,

time-ordered, parallel-processing tasks. The Cata-

ract methodology with its focus on configuration

and knowledge management can produce systems

that converge with the needs of the customer with

fewer cost and schedule escalations and project

failures provided appropriate knowledge manage-

ment and configuration tools are used.

REFERENCES

Boehm B., "A Spiral Model of Software

Development and Enhancement," IEEE

Computer, May 1988.

CHAOS, The Standish Group, 1995,

http://www.pm2go.com/sample_research/chao

s_1994_4.asp last accessed January 16, 2002.

Davies J., “Making Choices at the Right Time:

Producing Better Systems”, Fourth Annual

Symposium of the INCOSE-UK, 1998.

Denzler D., Kasser J.E., "Designing Budget

Tolerant Systems", 5th Annual International

Symposium of The National Council of Systems

Engineering (NCOSE), 1995.

DERA Systems Engineering Practices Reference

Model, Issue 1.0 May 1997, available via

http://www.incose.org/stc/SEGD12_2.htm, last

accessed January 18, 2002.

Donaldson S.E., Siegel S.G. Cultivating Successful

Software Development, Prentice Hall PRT,

1997.

Hitchins D.K., “Systems Engineering…In Search

of the Elusive Optimum”, Fourth Annual Sym-

posium of the INCOSE-UK, 1998.

Kasser J.E., “Enhancing Conferences and Sympo-

sia using Web Based Asynchronous Tech-

niques”, 11th International Symposium of the

INCOSE, Melbourne, Australia, 2001.

Kasser J.E., “Writing Requirements for Flexible

Systems”, INCOSE-UK 5th Annual Symposium,

2001

Kasser J.E. “A Framework for Requirements Engi-

neering in a Digital Integrated Environment”,

the Systems Engineering Test and Evaluation

Conference (SETE), 2000.

Kasser, J.E., “The WebConference: A Case Study”,

The INCOSE - Mid-Atlantic Regional

Conference, Reston, VA, 2000a.

Kasser J.E., “What Do You Mean, You Can't Tell

Me How Much of My Project Has Been

Completed?”, INCOSE 7th International

Symposium, Los Angeles, CA, 1997.

OASIG, The performance of information technolo-

gy and the role of human and organizational

factors. Report to the Economic and Social Re-

search Council, UK, 1996, available at

http://www.shef.ac.uk/~iwp/publications/repor

ts/itperf.html, last accessed January 16, 2002.

AUTHOR

Joseph Kasser has been a practising systems

engineer for over 30 years. As well as being a

Certified Manager, he has a doctorate in

Engineering Management (Systems Engineering).

He is the author of "Applying Total Quality

Management to Systems Engineering", Artech

House, 1995, and many conference papers. Dr.

Systems Engineering, Test & Evaluation Conference, Sydney, Australia , October 2002

Page 7

0950-7

Kasser performs research into improving the

acquisition process. He is a recipient of NASA’s

Manned Space Flight Awareness Award for quality

and technical excellence (Silver Snoopy), for

performing and directing systems engineering and

has many other awards (certificates and plaques) as

well as letters of commendation from previous

employers and satisfied customers. Dr. Kasser also

teaches systems and software engineering subjects

both in the classroom and Internationally via

distance education.

